Kohonen Self Organizing for Automatic Identification of Cartographic Objects
نویسندگان
چکیده مقاله:
Automatic identification and localization of cartographic objects in aerial and satellite images have gained increasing attention in recent years in digital photogrammetry and remote sensing. Although the automatic extraction of man made objects in essence is still an unresolved issue, the man made objects can be extracted from aerial photos and satellite images. Recently, the high-resolution satellite images, typically at most 3 meters in panchromatic band ground sample distance (GSD) and up to four multispectral bands in the visible and near infrared spectrum, are suitable for detection and identification of objects. This paper presents a new algorithm for identification of cartographic objects based on Artificial Neural Network (ANN). The algorithm is divided in two modules: image simplification by the Wavelet transform, Mathematical Morphology (MM) operators, and identification of object by the Kohonen Self Organizing Map (KSOM) and split and merge method. The study area included two parts of an orthoimage from Kish, Iran.
منابع مشابه
Multi-layer kohonen self-organizing feature map for language identification
In this paper we describe a novel use of a multi-layer Kohonen self-organizing feature map (MLKSFM) for spoken language identification (LID). A normalized, segment-based input feature vector is used in order to maintain the temporal information of speech signal. The LID is performed by using different system configurations of the MLKSFM. Compared with a baseline PPRLM system, our novel system i...
متن کاملAn accelerator for Kohonen Self-Organizing Maps
In this work we are describing hardware implementation of Kohonen SelfOrganizing Map. We examined existing neurocomputers and decided to work out our own neurocomputer with a different, more suitable architecture. Our neurocomputer is being realized on FPGA (Field-Programmable Gate Array). In this article we are describing basic neurocomputer unit structure as well as linkage of these elements ...
متن کاملSemi-automatic detection of cartographic objects Semi-automatic detection of cartographic objects in digital images
A computer system for semi-automatic detection of specific 2-D objects in digital images of cartographic maps is presented. The system design combines image analysis methods with computer graphics and data base technologies. The purpose of this application system is to speed up the work of a cartographician, to increase its efficiency and to transform cartograhpic maps into a symbolic, vektorba...
متن کاملExtending the Kohonen self-organizing map networks for clustering analysis
The self-organizing map (SOM) network was originally designed for solving problems that involve tasks such as clustering, visualization, and abstraction. While Kohonen’s SOM networks have been successfully applied as a classi6cation tool to various problem domains, their potential as a robust substitute for clustering and visualization analysis remains relatively unresearched. We believe the in...
متن کاملDesign of Kohonen Self-organizing Map with Reduced Structure
This paper deals with design of optimal structure of Kohonen Self-organizing maps for cluster analysis applications. The cluster analysis represents a group of methods whose aim is to classify the objects into clusters. There have been many new algorithms solving cluster analysis applications, which used neural networks. This paper deals with the use of advanced methods of neural networks repre...
متن کاملIdentification of GPI anchor attachment signals by a Kohonen self-organizing map
MOTIVATION Anchoring of proteins to the extracytosolic leaflet of membranes via C-terminal attachment of glycosylphosphatidylinositol (GPI) is ubiquitous and essential in eukaryotes. The signal for GPI-anchoring is confined to the C-terminus of the target protein. In order to identify anchoring signals in silico, we have trained neural networks on known GPI-anchored proteins, systematically opt...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 15 شماره 2
صفحات 109- 116
تاریخ انتشار 2002-07-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023